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A Motivating Example
Problem: estimate the travelling time from home to INRIA
depending on the departure time.

Data available: a database of 30 (working) days in the form

Dep. Time Time
9:06 23 min
8:26 27 min
9:43 19 min
9:30 25 min
8:58 40 min

10:03 15 min
... ...

n: number of training samples
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Solution: fit the data with a polynomial of degree 2

f (x) = ax2 + bx + c
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Data are sampled from a sampling distribution

Solution: fit the data with a polynomial of degree 2

f (x) = ax2 + bx + c

A. LAZARIC – Elements of Statistical Learning Theory April 2-15, 2012 - 4/84



A Motivating Example

07:30 08:00 08:30 09:00 09:30 10:00 10:30
20

25

30

35

40

45

50

55

Departure Time

T
ra

v
e

lli
n

g
 T

im
e

Alex−INRIA

Solution: fit the data with a polynomial of degree 2

f (x) = ax2 + bx + c

A. LAZARIC – Elements of Statistical Learning Theory April 2-15, 2012 - 4/84



A Motivating Example

07:30 08:00 08:30 09:00 09:30 10:00 10:30
20

25

30

35

40

45

50

55

Departure Time

T
ra

v
e

lli
n

g
 T

im
e

Alex−INRIA

Solution: fit the data with a polynomial of degree 2

f (x) = ax2 + bx + c

A. LAZARIC – Elements of Statistical Learning Theory April 2-15, 2012 - 4/84



A Motivating Example

07:30 08:00 08:30 09:00 09:30 10:00 10:30
20

25

30

35

40

45

50

55

Departure Time

T
ra

v
e

lli
n

g
 T

im
e

Alex−INRIA

Result: mean–squared error after testing for one year

1
T

T∑

t=1
(f (xt)− yt)2 = 24.5600

The performance is measured with a loss function
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Testing error 6= Training error
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A Motivating Example

Question: What if we use data collected from Rémi (30 days)?

1
T

T∑

t=1
(f (xt)− yt)2 = 26.6078

The performance changes at each training set.
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A Motivating Example

Question: What if we use all the data together (60 days)?

1
T

T∑

t=1
(f (xt)− yt)2 = 23.1641

The performance improves as the number of samples increases.
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A Motivating Example

Question: What if we used a polynomial of degree 4?

1
T

T∑

t=1
(f (xt)− yt)2 = 12.0554

The performance improves with the complexity of the polynomial.
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A Motivating Example

Question: Let’s try a polynomial of degree 10!

1
T

T∑

t=1
(f (xt)− yt)2 = 2.2488x105

The performance improves with the complexity of the polynomial
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A Motivating Example

Lessons learned from the example

I The samples are distributed according to a sampling
distribution

I The performance changes with the specific training set used
to train the polynomial

I The performance improves with the number of samples in
the training set

I The performance changes with the complexity of the
polynomial
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A Motivating Example

Questions we will try to answer to

I How much the performance changes with the training set?
I How many samples do we need to guarantee a sufficient

accuracy?
I How should we choose the complexity of the polynomial?
I ...
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Outline

The Binary Classification Problem

From Chernoff to Vapnik

Application of SLT to L1-regularized Least–squares

Conclusions
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The Binary Classification Problem

The Binary Classification Problem

The environment
I Input space X ⊆ Rs

I Output space Y = {0, 1}

The learner
I Hypothesis space H = {h : X → Y}

The performance
I Loss function `(y , ŷ) = I {y 6= ŷ}
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The Binary Classification Problem

The Binary Classification Problem: Examples

I Computer vision (e.g., medical imagining, character
recognition, video tracking)

I Natural language processing (e.g., document classification,
spam filtering)

I Geostatistics (e.g, petroleum geology, meteorology, pollution
monitoring)

I Biostatistics (e.g, protein folding, sequence analysis)
I Economics (e.g., fraud detection, market trends)
I ...
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The Binary Classification Problem

The Empirical Risk Minimizer

The training set
I Samples of the form input–output Zn = {zt = (xt , yt)}n

t=1

The empirical risk minimizer
I Empirical risk of a hypothesis h ∈ H for the training set Zn

R̂(h; Zn) =
1
n

n∑

t=1
`(yt , h(xt))

I The ERM
ĥ(·; Zn) = arg min

h∈H
R̂(h; Zn)
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The Binary Classification Problem

A Stochastic Generative Model

Assumption (Stochastic generative model)
I There exist a distribution P on the input–output space X ×Y
I All the pairs (x , y) are i.i.d. samples drawn from P

I Expected risk of a hypothesis h ∈ H for distribution P

R(h;P) = E(x ,y)∼P
[
`(y , h(x))

]

I Expected risk minimizer

h∗(·;P) = arg min
h∈H

R(h;P)
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The Binary Classification Problem

The Risk Bound Problem

Question: can we predict how well the ERM ĥ will perform w.r.t.
the best hypothesis h∗?

R(ĥ;P)− R(h∗;P) =???
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From Chernoff to Vapnik

Outline

The Binary Classification Problem

From Chernoff to Vapnik

Application of SLT to L1-regularized Least–squares

Conclusions
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From Chernoff to Vapnik

An Estimation Problem

Toss a (biased) coin n times.

What is the probability of observing more than
n/2 heads?
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From Chernoff to Vapnik

An Estimation Problem

Let X1, . . . ,Xn be independent Bernoulli
random variables with p > 1/2.

What is the probability of observing more than
n/2 times the event {Xt = 1}?

P
[ n∑

t=1
Xt >

n
2

]
=

n∑

i=n/2+1

(
n
i

)
pi (1− p)n−i

P
[ n∑

t=1
Xt >

n
2

]
≥ 1− exp

(
− 2n

(
p − 1

2

)2)
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From Chernoff to Vapnik

The Chernoff–Hoeffding Bound

Theorem
Let X1, . . . ,Xn be i.i.d. samples from a distribution bounded in
[a, b], then for any ε > 0

P

[∣∣∣1n

n∑

t=1
Xt − E[X1]

∣∣∣ > ε

]
≤ 2 exp

(
− 2nε2

(b − a)2

)
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The Chernoff–Hoeffding Bound

Theorem
Let X1, . . . ,Xn be i.i.d. samples from a distribution bounded in
[a, b], then for any ε > 0

P

[ ∣∣∣1n

n∑

t=1
Xt − E[X1]

∣∣∣
︸ ︷︷ ︸

deviation

> ε︸︷︷︸
accuracy

]
≤ 2 exp

(
− 2nε2

(b − a)2

)

︸ ︷︷ ︸
confidence
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From Chernoff to Vapnik

The Chernoff–Hoeffding Bound (Cont.d)

Theorem
Let X1, . . . ,Xn be i.i.d. samples from a distribution bounded in
[a, b], then for any δ ∈ (0, 1)

P

[∣∣∣1n

n∑

t=1
Xt − E[X1]

∣∣∣ > (b − a)

√
log 2/δ

2n

]
≤ δ
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From Chernoff to Vapnik

The Chernoff–Hoeffding Bound (Cont.d)

Theorem
Let X1,X2, . . . be i.i.d. samples from a distribution bounded in
[a, b], then for any δ ∈ (0, 1) and ε > 0

P

[∣∣∣1n

n∑

t=1
Xt − E[X1]

∣∣∣ > ε

]
≤ δ

if n ≥ (b−a)2 log 2/δ
2ε2 .
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From Chernoff to Vapnik

Back to the Binary Classification Problem (1)

Recall that

ĥ(·; Zn) = arg min
h∈H

R̂(h; Zn) and h∗(·;P) = arg min
h∈H

R(h;P)

so we should first understand what is the difference between

R̂(h; Zn) =
1
n

n∑

t=1
`(yt , h(xt)) and R(h;P) = E(x ,y)∼P

[
`(y , h(x))

]
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so we should first understand what is the difference between

R̂(h; Zn) =
1
n

n∑

t=1
`(yt , h(xt)) and R(h;P) = E(x ,y)∼P

[
`(y , h(x))

]
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From Chernoff to Vapnik

Back to the Binary Classification Problem (1)

Notice that for any fixed h ∈ H and training set Zn
∣∣∣R̂(h; Zn)− R(h;P)

∣∣∣

∣∣∣1n

n∑

t=1
`(yt , h(xt))− E(x ,y)∼P

[
`(y , h(x))

]∣∣∣

∣∣∣1n

n∑

t=1
Xt − E[X1]

∣∣∣

A. LAZARIC – Elements of Statistical Learning Theory April 2-15, 2012 - 29/84



From Chernoff to Vapnik

Back to the Binary Classification Problem (1)

Notice that for any fixed h ∈ H and training set Zn
∣∣∣R̂(h; Zn)− R(h;P)

∣∣∣

∣∣∣1n

n∑

t=1
`(yt , h(xt))− E(x ,y)∼P

[
`(y , h(x))

]∣∣∣

∣∣∣1n

n∑

t=1
Xt − E[X1]

∣∣∣

A. LAZARIC – Elements of Statistical Learning Theory April 2-15, 2012 - 29/84



From Chernoff to Vapnik

Back to the Binary Classification Problem (1)

Notice that for any fixed h ∈ H and training set Zn
∣∣∣R̂(h; Zn)− R(h;P)

∣∣∣

∣∣∣1n

n∑

t=1
`(yt , h(xt))− E(x ,y)∼P

[
`(y , h(x))

]∣∣∣

∣∣∣1n

n∑

t=1
Xt − E[X1]

∣∣∣

A. LAZARIC – Elements of Statistical Learning Theory April 2-15, 2012 - 29/84



From Chernoff to Vapnik

Back to the Binary Classification Problem (1)

Lemma
Let Zn be a training set of n i.i.d. samples drawn from a
distribution P, then for any fixed h ∈ H and δ ∈ (0, 1)

P

[∣∣∣1n

n∑

t=1
`(yt , h(xt))− E(x ,y)∼P

[
`(y , h(x))

]∣∣∣ >
√

log 2/δ
2n

]
≤ δ
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From Chernoff to Vapnik

Back to the Binary Classification Problem (1)

Lemma
Let Zn be a training set of n i.i.d. samples drawn from a
distribution P, then for any fixed h ∈ H and δ ∈ (0, 1)

P

[∣∣∣ 1
n

n∑

t=1
`(yt , h(xt))

︸ ︷︷ ︸
empirical risk

−E(x ,y)∼P
[
`(y , h(x))

]
︸ ︷︷ ︸

expected risk

∣∣∣ >
√

log 2/δ
2n

]
≤ δ
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From Chernoff to Vapnik

Back to the Binary Classification Problem (1)

Problem: we want to study the performance of the random ERM

ĥ(·; Zn) = arg min
h∈H

R̂(h; Zn)
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From Chernoff to Vapnik

The Union Bound

Also known as: Boole’s inequality, Bonferroni inequality, etc.

Theorem
Let A1,A2, . . . be a countable set of events, then

P
[⋃

i
Ai
]
≤
∑

i
P
[
Ai
]
.
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From Chernoff to Vapnik

Back to the Binary Classification Problem (2)
Problem: we want to study the performance of the random ERM

ĥ(·; Zn) = arg min
h∈H

R̂(h; Zn)

P

[
∃h ∈ H :

∣∣∣1n

n∑

t=1
`(yt , h(xt))− E(x ,y)∼P

[
`(y , h(x))

]∣∣∣ > ε

]
P
[{∣∣∣1n

n∑

t=1
`(yt , h1(xt))− E(x ,y)∼P

[
`(y , h1(x))

]∣∣∣ > ε
}⋃

{∣∣∣1n

n∑

t=1
`(yt , h2(xt))− E(x ,y)∼P

[
`(y , h2(x))

]∣∣∣ > ε
}⋃

· · ·
{∣∣∣1n

n∑

t=1
`(yt , hN(xt))− E(x ,y)∼P

[
`(y , hN(x))

]∣∣∣ > ε
}⋃

· · ·
]
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From Chernoff to Vapnik

Back to the Binary Classification Problem (2)

Lemma
Let Zn be a training set of n i.i.d. samples drawn from a
distribution P and H a finite hypothesis set with |H| = N, then for
any δ ∈ (0, 1)

P

[
∃h ∈ H :

∣∣∣1n

n∑

t=1
`(yt , h(xt))− E(x ,y)∼P

[
`(y , h(x))

]∣∣∣ >
√

log 2/δ
2n

]
≤

NP

[∣∣∣1n

n∑

t=1
`(yt , h(xt))− E(x ,y)∼P

[
`(y , h(x))

]∣∣∣ >
√

log 2/δ
2n

]
≤ Nδ
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From Chernoff to Vapnik

Back to the Binary Classification Problem (2)

Lemma
Let Zn be a training set of n i.i.d. samples drawn from a
distribution P and H a finite hypothesis set with |H| = N, then for
any δ ∈ (0, 1)

P

[
∃h ∈ H:

∣∣∣1n

n∑

t=1
`(yt , h(xt))− E(x ,y)∼P

[
`(y , h(x))

]∣∣∣ >
√

log 2N/δ
2n

]
≤ δ
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From Chernoff to Vapnik

Back to the Binary Classification Problem (2)

Problem: In general H contains an infinite number of hypotheses
(e.g., a linear classifier)
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From Chernoff to Vapnik

The Symmetrization Trick

P

[
∃h ∈ H :

∣∣∣1n

n∑

t=1
`(yt , h(xt))− E(x ,y)∼P

[
`(y , h(x))

]∣∣∣ > ε

]

≤ 2P
[
∃h ∈ H :

∣∣∣1n

n∑

t=1
`(yt , h(xt))− 1

n

n∑

t=1
`(y ′t , h(x ′t))

∣∣∣ > ε

2

]

with the ghost samples {(x ′t , y ′t)}n
t=1 independently drawn from P.
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From Chernoff to Vapnik

The VC dimension

Not all the infinities are the same...

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

A. LAZARIC – Elements of Statistical Learning Theory April 2-15, 2012 - 39/84



From Chernoff to Vapnik

The VC dimension (cont’d)

How many different predictions can a space H
produce over n distinct inputs?
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From Chernoff to Vapnik

The VC dimension (cont’d)

The VC dimension of a linear classifier in dim. 2 is VC(H) = 3.
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From Chernoff to Vapnik

The VC dimension (cont’d)

The VC dimension of a linear classifier in dim. 2 is VC(H) = 3.
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From Chernoff to Vapnik

The VC dimension (cont’d)
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From Chernoff to Vapnik

The VC dimension (cont’d)
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From Chernoff to Vapnik

The VC dimension (cont’d)
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From Chernoff to Vapnik

The VC dimension (cont’d)
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From Chernoff to Vapnik

The VC dimension (cont’d)

The VC dimension of a linear classifier in dim. 2 is VC(H) = 3.
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From Chernoff to Vapnik

The VC dimension (cont’d)

The VC dimension of a linear classifier in dim. 2 is VC(H) = 3.
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From Chernoff to Vapnik

The VC dimension (cont’d)

The VC dimension of a linear classifier in dim. 2 is VC(H) = 3.
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From Chernoff to Vapnik

The VC dimension (cont’d)

The VC dimension of a linear classifier in dim. 2 is VC(H) = 3.
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From Chernoff to Vapnik

The VC dimension (cont’d)

Let S = (x1, . . . , xd ) be an arbitrary sequence of points, then

ΠS(H) = {(h(x1), . . . , h(xd )), h ∈ H}
is the set of all the possible ways the d points can be classified by
hypothesis in H.

Definition
A set S is shattered by a hypothesis space H if |ΠS(H)| = 2d .

A. LAZARIC – Elements of Statistical Learning Theory April 2-15, 2012 - 42/84



From Chernoff to Vapnik

The VC dimension (cont’d)

Let S = (x1, . . . , xd ) be an arbitrary sequence of points, then

ΠS(H) = {(h(x1), . . . , h(xd )), h ∈ H}
is the set of all the possible ways the d points can be classified by
hypothesis in H.

Definition
A set S is shattered by a hypothesis space H if |ΠS(H)| = 2d .
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From Chernoff to Vapnik

The VC dimension (cont’d)

Definition (VC Dimension)
The VC dimension of a hypothesis space H is

VC(H) = max{d | ∃|S| = d , |ΠS(H)| = 2d}

Lemma (Sauer’s Lemma)
Let H be a hypothesis space with VC dimension d, then for any
sequence of n points S = (x1, . . . , xn) with n > d

|ΠS(H)| ≤
d∑

i=0

(
n
i

)
≤ nd

A. LAZARIC – Elements of Statistical Learning Theory April 2-15, 2012 - 43/84



From Chernoff to Vapnik

The VC dimension (cont’d)

Definition (VC Dimension)
The VC dimension of a hypothesis space H is

VC(H) = max{d | ∃|S| = d , |ΠS(H)| = 2d}

Lemma (Sauer’s Lemma)
Let H be a hypothesis space with VC dimension d, then for any
sequence of n points S = (x1, . . . , xn) with n > d

|ΠS(H)| ≤
d∑

i=0

(
n
i

)
≤ nd
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From Chernoff to Vapnik

Back to the Binary Classification Problem (3)

Question: how many values can `(·, ·) take on 2n samples?

2P
[
∃h ∈ H :

∣∣∣1n

n∑

t=1
`(yt , h(xt))− 1

n

n∑

t=1
`(y ′t , h(x ′t))

∣∣∣ > ε

2

]

If VC(H) = d and 2n > d , then the answer is at most (2n)d !
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From Chernoff to Vapnik

Back to the Binary Classification Problem (3)

Lemma
Let Zn be a training set of n i.i.d. samples drawn from a
distribution P and H a hypothesis space with VC(H) = d, then for
any δ ∈ (0, 1)

P

[
∃h:
∣∣∣1n

n∑

t=1
`(yt , h(xt))− E(x ,y)∼P

[
`(y , h(x))

]∣∣∣ > 2
√

log 2N/δ
2n

]
≤ 2δ

with N = (2n)d .
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From Chernoff to Vapnik

Back to the Binary Classification Problem (3)

A simplified reading of the previous lemma.

For any training set Zn and any hypothesis h ∈ H the error of
using the empirical risk instead of the expected risk is

∣∣∣R̂(h; Zn)− R(h;P)
∣∣∣ ≤ O

(√d log n/δ
n

)

with at least 1− δ probability.
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From Chernoff to Vapnik

The Final Proof

Putting all the pieces together...

R(ĥ;P)− R(h∗;P) =

= R(ĥ;P)− R̂(ĥ; Zn) + R̂(ĥ; Zn)− R̂(h∗; Zn) + R̂(h∗; Zn)− R(h∗;P)
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R(ĥ;P)− R(h∗;P) =
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From Chernoff to Vapnik

The Final Proof

Putting all the pieces together...

R(ĥ;P)− R(h∗;P) =

= R(ĥ;P)− R̂(ĥ; Zn)︸ ︷︷ ︸
diff empirical/expected

+ R̂(ĥ; Zn)− R̂(h∗; Zn)︸ ︷︷ ︸
ĥ is the ERM

+ R̂(h∗; Zn)− R(h∗;P)︸ ︷︷ ︸
diff empirical/expected

≤ O
(√d log n/δ

n

)
+ 0 + O

(√d log n/δ
n

)
w.p. 1− 2δ

A. LAZARIC – Elements of Statistical Learning Theory April 2-15, 2012 - 48/84



From Chernoff to Vapnik

The Final Proof

Putting all the pieces together...
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From Chernoff to Vapnik

The Final Bound

Theorem (VC–Bound)
Let Zn be a training set of n i.i.d. samples from a distribution P
and H be a hypothesis space with VC(H) = d. If

ĥ(·; Zn) = arg min
h∈H

R̂(h; Zn)

and h∗(·;P) = arg min
h∈H

R(h;P)

then
R(ĥ;P) ≤ R(h∗;P) + O

(√d log n/δ
n

)

with probability at least 1− δ (w.r.t. the randomness in the
training set).
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From Chernoff to Vapnik

Reading the Bound

R(ĥ;P)︸ ︷︷ ︸
risk

≤ R(h∗;P)︸ ︷︷ ︸
approximation error

+ O
(√d log n/δ

n

)

︸ ︷︷ ︸
estimation error
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From Chernoff to Vapnik

Reading the Bound (cont’d)

Question: If we have n samples and we use a linear classifier in a
d-dim space, we want to predict how much error we make with a
confidence 1− δ.

Answer:

R(ĥ;P) ≤ R(h∗;P) + O
(√(d + 1) log n/δ

n

)
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From Chernoff to Vapnik

Reading the Bound (cont’d)

Question: If we have n samples and we use a linear classifier in a
d-dim space, we want to predict how much error we make with a
confidence 1− δ.

Answer:

R(ĥ;P) ≤ R(h∗;P) + O
(√(d + 1) log n/δ

n

)
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From Chernoff to Vapnik

Reading the Bound (cont’d)

Question: What happens if we keep increasing the number of
samples?

Answer:
lim

n→∞
R(ĥ;P) ≤ R(h∗;P)

We converge to the same performance as the best hypothesis h∗ in
our space.
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From Chernoff to Vapnik

Reading the Bound (cont’d)

Question: We can accept at most an error ε over (1− δ)% of
times, how many samples should we use?

Answer:
n ≥ O

(d log 1/δ
ε2

)
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From Chernoff to Vapnik

Reading the Bound (cont’d)

Question: We are using polynomials, what is the right degree d to
use?

partial Answer: it depends on how good your space H is and how
many samples you have.
Remark 1 : if d > n then O

(√
d log(n/δ)/n

)
≈ 1... not very

useful...
Remark 2 : let R(h∗;P) be a decreasing function of d (say f (d)),
then there exist an optimal d∗ such that

d∗ = arg min
d

(
f (d) + O

(√(d + 1) log n/δ
n

))
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Application of SLT to L1-regularized Least–squares

Outline

The Binary Classification Problem

From Chernoff to Vapnik

Application of SLT to L1-regularized Least–squares

Conclusions
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Application of SLT to L1-regularized Least–squares

The Regression Problem

The environment
I Input space X ⊆ Rs

I Output space Y ⊆ R

The learner
I Function space F = {f : X → Y}

The performance
I Loss function `(y , ŷ)
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Application of SLT to L1-regularized Least–squares

The Least–squares Regression Problem

The environment
I Input space X ⊆ Rs

I Output space Y ⊆ R

The learner
I Basis functions ϕi : X → Y, i = 1, . . . , d
I Linear d-dim function space
F = {fα(·) =

∑d
i=1 αiϕi (·); α ∈ Rd}

The performance
I Loss function `(y , ŷ) = (y − ŷ)2
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A. LAZARIC – Elements of Statistical Learning Theory April 2-15, 2012 - 57/84



Application of SLT to L1-regularized Least–squares

The Least–squares Regression Problem

The environment
I Input space X ⊆ Rs

I Output space Y ⊆ R

The learner
I Basis functions ϕi : X → Y, i = 1, . . . , d
I Linear d-dim function space
F = {fα(·) =

∑d
i=1 αiϕi (·); α ∈ Rd}

The performance
I Loss function `(y , ŷ) = (y − ŷ)2
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Application of SLT to L1-regularized Least–squares

The Least–squares Regression Problem (cont’d)

In the polynomial regression example (e.g., order 2):
I Basis functions: ϕ1(x) = x2, ϕ2(x) = x , ϕ3(x) = 1
I Function space

F = {fα(x) = α1x2 + α2x + α3}
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Application of SLT to L1-regularized Least–squares

The Empirical Risk Minimizer

The training set
I Samples of the form input–output Zn = {zt = (xt , yt)}n

t=1

The empirical risk minimizer
I Empirical risk of a function fα ∈ F for the training set Zn

R̂(fα; Zn) =
1
n

n∑

t=1
(yt − fα(xt))2

I The ERM
fα̂(·; Zn) = arg min

fα∈F
R̂(f ; Zn)
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Application of SLT to L1-regularized Least–squares

A Stochastic Generative Model
Assumption (Stochastic generative model)

I There exists a distribution ρ on the input space X
I There exists a target function f ∗ : X → Y
I There exists a (zero-mean bounded) noise ξ, such that

E[ξ] = 0 and |ξ| < C
I All the pairs (x , y) are i.i.d. samples generated as

y = f ∗(x) + ξ, x ∼ PX

I Expected risk of f ∈ F w.r.t. the target function f ∗ and a
distribution ρ

R(fα; f ∗, ρ) = Ex∼ρ
[
(fα(x)− f ∗(x))2]

I Expected risk minimizer

fα∗(·; f ∗, ρ) = arg min
fα∈F

R(fα; f ∗, ρ)
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Application of SLT to L1-regularized Least–squares

Back to the Motivating Example
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f ∗(x) = a + b exp
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d2

)
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Application of SLT to L1-regularized Least–squares

A Bit More of Notation

Norms
I L2–weighted norm of f w.r.t. a distribution ρ

||f ||22,ρ = Ex∼ρ[f (x)2]

I L2–weighted empirical norm of f w.r.t. a sequence (x1, . . . , xn)

||f ||22,n =
1
n

n∑

t=1
f (xt)2

I L2–weighted empirical norm of a vector v ∈ Rn

||v ||22,n =
1
n

n∑

t=1
v 2

t
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Application of SLT to L1-regularized Least–squares

A Bit More of Notation (cont’d)

Vector space (from F on (x1, . . . , xn))

Fn = {(fα(x1), . . . , fα(xn)); fα ∈ F}

Projection operator
I Projection operator Π of a function f ∗ onto a function space F

Πf ∗ = arg min
f∈F
||f − f ∗||2,ρ

I Empirical projection operator Π̂n of a vector y onto a vector space
Fn

Π̂ny = arg min
f∈Fn
||f − y||2,n
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Application of SLT to L1-regularized Least–squares

A Geometric View

Π̂f ∗

Fn

ξ

f ∗

y

fα = Π̂y
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Application of SLT to L1-regularized Least–squares

Least–squares Solution

Recalling the definition of risk above we have (y = (y1, . . . , yn))

fα∗ = Πf ∗

fα̂ = Π̂ny

Given feature matrix Φ ∈ Rn×d

Φt,i = ϕi (Xt)

the least–squares solution is

α̂ = (Φ>Φ)−1y
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Application of SLT to L1-regularized Least–squares

A Prediction Error Bound

Theorem
Let the training set Zn be generated according to the generative
model above with f ∗ the target function and a bounded noise
|ξ| ≤ C. If F is a d-dimensional linear function space, then the
least–squares solution satisfies:

||fα̂ − f ∗||22,ρ ≤ 8||fα∗ − f ∗||22,ρ + O
(d log n/δ

n

)

with probability 1− δ.
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Application of SLT to L1-regularized Least–squares

A Prediction Error Bound (cont’d)

||fα̂ − f ∗||22,ρ︸ ︷︷ ︸
prediction error

≤ 8||fα∗ − f ∗||22,ρ︸ ︷︷ ︸
approximation error

+ O
(d log n/δ

n

)

︸ ︷︷ ︸
estimation error
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Application of SLT to L1-regularized Least–squares

A Prediction Error Bound (cont’d)

Least–squares regression vs binary classification

O
(d log n/δ

n

)

︸ ︷︷ ︸
LS regression

�O
(√d log n/δ

n

)

︸ ︷︷ ︸
classification

8||fα∗ − f ∗||22,ρ︸ ︷︷ ︸
LS regression

� R(h∗;P)︸ ︷︷ ︸
classification
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Application of SLT to L1-regularized Least–squares

Least–squares Solution in High-Dimensions

Question: How should we design the basis functions so as to have
a small approximation error?

Answer: If you do not have a specific domain knowledge, just keep
adding features! (possibly independent...)

Problem: the bound scales linearly with d and so the need for
samples. So the more the features the more the samples!
Actually if d ≥ n then the bounds are completely useless!
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Application of SLT to L1-regularized Least–squares

L1-Regularized Least–squares Regression

Assumption (High–dimensional and Sparsity assumption)
The target function f ∗ belong to the high–dimensional function
space F , that is

fα∗ = Πf ∗ = f ∗ (||fα∗ − f ||2,ρ = 0)

and it can be represented by a small subset of the d features
defining F , that is

||α∗||0 � d .
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Application of SLT to L1-regularized Least–squares

L1-Regularized Least–squares Regression

Given the previous assumption we want to force fα̂ to be sparse
too. Thus,

fα̂ = arg min
fα∈F

1
n

n∑

t=1
(yt − fα(xt))2 + λ||α||0

Problem: this optimization problem is NP-hard...
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Application of SLT to L1-regularized Least–squares

L1-Regularized Least–squares Regression (cont’d)

The LASSO (least absolute shrinkage and selection operator)

fα̂ = arg min
fα∈F

1
n

n∑

t=1
(yt − fα(xt))2 + λ||α||1

The L1–norm is known to be a sparsity–inducing norm.
Related to: model selection, feature selection, compressed sensing, high–dimensional
statistics, etc.
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Application of SLT to L1-regularized Least–squares

A Prediction Error Bound (1)

Let us first state a bound for an oracle which knows in advance the
features corresponding to non–zero α∗ coefficients.

Theorem
An oracle running ordinary least–squares on the set of features
S = {i |α∗i 6= 0} with |S| = s � d would obtain a performance

||f ols
α̂ − f ∗||22,n ≤ 8||fα∗ − f ∗||22,n + O

(s log n/δ
n

)
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Application of SLT to L1-regularized Least–squares
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Theorem
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S = {i |α∗i 6= 0} with |S| = s � d would obtain a performance

||f ols
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(s log n/δ
n

)

Note: we now consider fixed design bounds instead of random design bounds.
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Application of SLT to L1-regularized Least–squares

A Prediction Error Bound (2)

Theorem
Let fα̂ be the function returned by LASSO when trained on a
training set Zn and a d-dimensional function space F , then

||fα̂ − f ∗||22,n ≤ O
(
||α∗||1

√
log d/δ

n

)

if λ = O(
√

log(d/δ)/n).
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Application of SLT to L1-regularized Least–squares

A Prediction Error Bound (2)

Theorem
Let fα̂ be the function returned by LASSO when trained on a
training set Zn and a d-dimensional function space F . If a suitable
condition on the features* holds, then

||fα̂ − f ∗||22,n ≤ O
(s log d/δ

n

)

(*) linear independency, restricted isometry property, compatibility condition, ...
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Application of SLT to L1-regularized Least–squares

Comparison with Least-squares

Recall:
I d number of features
I s level of sparsity of the target function

Method Estimation error

LS O
(

d log 1/δ
n

)

LASSO O
(

s log(d/δ)
n

)

Oracle LS O
(

s log 1/δ
n

)
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Conclusions

Outline

The Binary Classification Problem

From Chernoff to Vapnik

Application of SLT to L1-regularized Least–squares

Conclusions
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Conclusions

Other (Technical) Applications of SLT

I Neural networks
I Margin–based classification
I Regularized least–squares regression
I Reinforcement Learning
I Density estimation
I Matrix completion
I ...
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Conclusions

Other (Practical) Applications of SLT

I Computer vision (Kinetc!)
I Spam filtering
I Computer security
I Natural language processing (Watson!)
I Bioinformatics
I Collaborative filtering (Netflix!)
I Brain–computer interface
I ...
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Conclusions

Extensions

I Active Learning
I Unsupervised learning
I Semi-supervised learning
I Fixed design learning
I Transductive learning
I Samples from Markov chains
I Samples from weakly–coupled processes
I Learnability for ergodic processes
I ...
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Conclusions

Things to Remember

I Learning algorithms are stochastic objects but their behavior
can be predicted (in probability)

I Theory helps in designing better algorithms and good
algorithms forces us to develop smart theory

I Theoretical bounds help in understand the critical parameters
and their impact on the performance

I Theoretical bounds can help in tuning the parameters
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Conclusions

Things to Remember

“He who loves practice without theory is like the
sailor who boards ship without a rudder and

compass and never knows where he may cast.”

Leonardo da Vinci
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