

Advanced Topics in Machine Learning Part I: Elements of Statistical Learning Theory A. LAZARIC (*INRIA-Lille*)

DEI, Politecnico di Milano

Ínría_

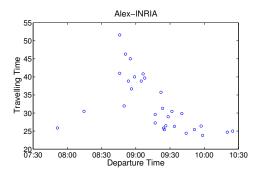
A. LAZARIC - Elements of Statistical Learning Theory

Problem: estimate the travelling time from home to INRIA depending on the departure time.

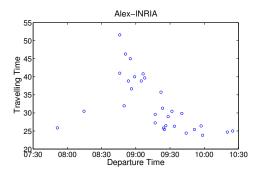
Data available: a database of 30 (working) days in the form

Dep. Time	Time
9:06	23 min
8:26	27 min
9:43	19 min
9:30	25 min
8:58	40 min
10:03	15 min

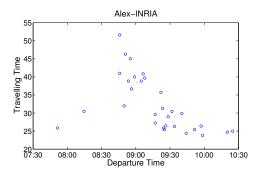
n: number of training samples



A. LAZARIC - Elements of Statistical Learning Theory

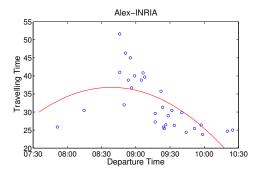


Data are sampled from a sampling distribution

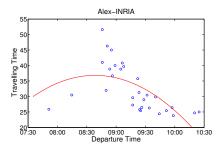


Solution: fit the data with a polynomial of degree 2

$$f(x) = ax^2 + bx + c$$



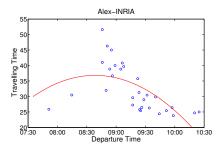
A. LAZARIC - Elements of Statistical Learning Theory



Result: mean-squared error after testing for one year

$$\frac{1}{T}\sum_{t=1}^{T}(f(x_t) - y_t)^2 = 24.5600$$

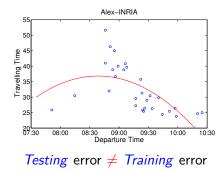
nría



Result: mean-squared error after testing for one year

$$\frac{1}{T}\sum_{t=1}^{T}(f(x_t) - y_t)^2 = 24.5600$$

The performance is measured with a **loss function**

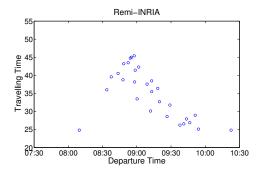


A. LAZARIC - Elements of Statistical Learning Theory

Question: What if we use data collected from Rémi (30 days)?

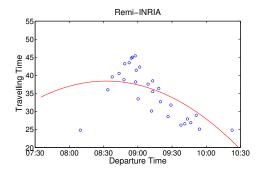
A. LAZARIC - Elements of Statistical Learning Theory

Question: What if we use data collected from Rémi (30 days)?



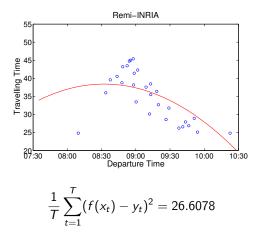
A. LAZARIC - Elements of Statistical Learning Theory

Question: What if we use data collected from Rémi (30 days)?

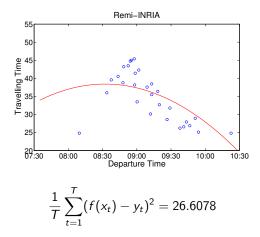


A. LAZARIC - Elements of Statistical Learning Theory

Question: What if we use data collected from Rémi (30 days)?



Question: What if we use data collected from Rémi (30 days)?



The performance changes at each training set.

A. LAZARIC - Elements of Statistical Learning Theory

Question: What if we use all the data together (60 days)?

Question: What if we use all the data together (60 days)?

$$\frac{1}{T}\sum_{t=1}^{T}(f(x_t) - y_t)^2 = 23.1641$$

Question: What if we use all the data together (60 days)?

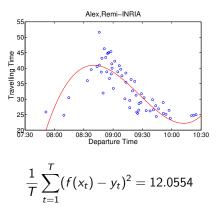
$$\frac{1}{T}\sum_{t=1}^{T}(f(x_t) - y_t)^2 = 23.1641$$

The performance **improves** as the number of samples increases.

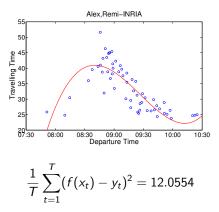
Question: What if we used a polynomial of degree 4?

A. LAZARIC - Elements of Statistical Learning Theory

Question: What if we used a polynomial of degree 4?



Question: What if we used a polynomial of degree 4?



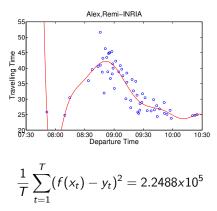
The performance **improves** with the complexity of the polynomial.

A. LAZARIC - Elements of Statistical Learning Theory

Question: Let's try a polynomial of degree 10!

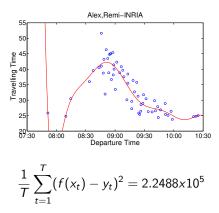
A. LAZARIC - Elements of Statistical Learning Theory

Question: Let's try a polynomial of degree 10!



A. LAZARIC - Elements of Statistical Learning Theory

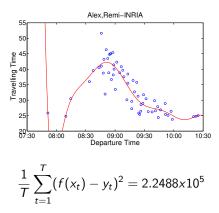
Question: Let's try a polynomial of degree 10!



The performance *improves* with the complexity of the polynomial

A. LAZARIC - Elements of Statistical Learning Theory

Question: Let's try a polynomial of degree 10!



The performance **changes** with the complexity of the polynomial

A. LAZARIC - Elements of Statistical Learning Theory

Lessons learned from the example

A. LAZARIC - Elements of Statistical Learning Theory

Lessons learned from the example

The samples are distributed according to a sampling distribution

Lessons learned from the example

- The samples are distributed according to a sampling distribution
- The *performance changes* with the specific training set used to train the polynomial

Lessons learned from the example

- The samples are distributed according to a sampling distribution
- The *performance changes* with the specific training set used to train the polynomial
- The performance *improves with the number of samples* in the training set

Lessons learned from the example

- The samples are distributed according to a sampling distribution
- The *performance changes* with the specific training set used to train the polynomial
- The performance *improves with the number of samples* in the training set
- The performance changes with the complexity of the polynomial

Questions we will try to answer to

A. LAZARIC - Elements of Statistical Learning Theory

Questions we will try to answer to

How much the performance changes with the training set?

Questions we will try to answer to

- How much the performance changes with the training set?
- How many samples do we need to guarantee a sufficient accuracy?

Questions we will try to answer to

- How much the performance changes with the training set?
- How many samples do we need to guarantee a sufficient accuracy?
- ► How should we choose the complexity of the polynomial?

▶ ..

The Binary Classification Problem

From Chernoff to Vapnik

Application of SLT to L1-regularized Least-squares

Conclusions

A. LAZARIC - Elements of Statistical Learning Theory

The Binary Classification Problem

Outline

The Binary Classification Problem

From Chernoff to Vapnik

Application of SLT to L1-regularized Least-squares

Conclusions

The Binary Classification Problem

The environment

- Input space $\mathcal{X} \subseteq \mathbb{R}^{s}$
- Output space $\mathcal{Y} = \{0, 1\}$

The Binary Classification Problem

The environment

- Input space $\mathcal{X} \subseteq \mathbb{R}^{s}$
- Output space $\mathcal{Y} = \{0, 1\}$

The learner

• Hypothesis space $\mathcal{H} = \{h : \mathcal{X} \to \mathcal{Y}\}$

The Binary Classification Problem

The environment

- Input space $\mathcal{X} \subseteq \mathbb{R}^{s}$
- Output space $\mathcal{Y} = \{0, 1\}$

The learner

• Hypothesis space $\mathcal{H} = \{h : \mathcal{X} \to \mathcal{Y}\}$

The performance

• Loss function
$$\ell(y, \hat{y}) = \mathbb{I} \{ y \neq \hat{y} \}$$

The Binary Classification Problem: Examples

 Computer vision (e.g., medical imagining, character recognition, video tracking)

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 17/84

The Binary Classification Problem: Examples

- Computer vision (e.g., medical imagining, character recognition, video tracking)
- Natural language processing (e.g., document classification, spam filtering)

The Binary Classification Problem: Examples

- Computer vision (e.g., medical imagining, character recognition, video tracking)
- Natural language processing (e.g., document classification, spam filtering)
- Geostatistics (e.g, petroleum geology, meteorology, pollution monitoring)

The Binary Classification Problem: Examples

- Computer vision (e.g., medical imagining, character recognition, video tracking)
- Natural language processing (e.g., document classification, spam filtering)
- Geostatistics (e.g, petroleum geology, meteorology, pollution monitoring)
- Biostatistics (e.g, protein folding, sequence analysis)

The Binary Classification Problem: Examples

- Computer vision (e.g., medical imagining, character recognition, video tracking)
- Natural language processing (e.g., document classification, spam filtering)
- Geostatistics (e.g, petroleum geology, meteorology, pollution monitoring)
- Biostatistics (e.g, protein folding, sequence analysis)
- Economics (e.g., fraud detection, market trends)

▶ ...

The Empirical Risk Minimizer

The training set

Samples of the form input–output $Z_n = \{z_t = (x_t, y_t)\}_{t=1}^n$

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 18/84

The Empirical Risk Minimizer

The training set

Samples of the form input-output $Z_n = \{z_t = (x_t, y_t)\}_{t=1}^n$

The empirical risk minimizer

• Empirical risk of a hypothesis $h \in \mathcal{H}$ for the training set Z_n

$$\widehat{R}(h; Z_n) = \frac{1}{n} \sum_{t=1}^n \ell(y_t, h(x_t))$$

The Empirical Risk Minimizer

The training set

Samples of the form input-output $Z_n = \{z_t = (x_t, y_t)\}_{t=1}^n$

The empirical risk minimizer

• Empirical risk of a hypothesis $h \in \mathcal{H}$ for the training set Z_n

$$\widehat{R}(h; Z_n) = \frac{1}{n} \sum_{t=1}^n \ell(y_t, h(x_t))$$

The ERM

$$\hat{h}(\cdot; Z_n) = \arg\min_{h\in\mathcal{H}} \widehat{R}(h; Z_n)$$

A Stochastic Generative Model

Assumption (Stochastic generative model)

- There exist a distribution \mathcal{P} on the input-output space $\mathcal{X} \times \mathcal{Y}$
- All the pairs (x, y) are *i.i.d.* samples drawn from \mathcal{P}

A Stochastic Generative Model

Assumption (Stochastic generative model)

- There exist a distribution \mathcal{P} on the input-output space $\mathcal{X} \times \mathcal{Y}$
- All the pairs (x, y) are *i.i.d.* samples drawn from \mathcal{P}
- Expected risk of a hypothesis $h \in \mathcal{H}$ for distribution \mathcal{P}

$$R(h;\mathcal{P}) = \mathbb{E}_{(x,y)\sim\mathcal{P}}\big[\ell(y,h(x))\big]$$

A Stochastic Generative Model

Assumption (Stochastic generative model)

- There exist a distribution \mathcal{P} on the input-output space $\mathcal{X} \times \mathcal{Y}$
- All the pairs (x, y) are *i.i.d.* samples drawn from \mathcal{P}
- Expected risk of a hypothesis $h \in \mathcal{H}$ for distribution \mathcal{P}

$$R(h;\mathcal{P}) = \mathbb{E}_{(x,y)\sim\mathcal{P}}\big[\ell(y,h(x))\big]$$

Expected risk minimizer

$$h^*(\cdot;\mathcal{P}) = rg\min_{h\in\mathcal{H}} R(h;\mathcal{P})$$

April 2-15, 2012 - 19/84

The Risk Bound Problem

Question: can we *predict* how well the ERM \hat{h} will perform w.r.t. the best hypothesis h^* ?

$$R(\hat{h};\mathcal{P}) - R(h^*;\mathcal{P}) = ???$$

Outline

The Binary Classification Problem

From Chernoff to Vapnik

Application of SLT to L1-regularized Least-squares

Conclusions

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 21/84

An Estimation Problem

Toss a (biased) coin *n* times.

What is the probability of observing more than n/2 heads?

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 22/84

An Estimation Problem

Let X_1, \ldots, X_n be independent Bernoulli random variables with p > 1/2.

What is the probability of observing more than n/2 times the event $\{X_t = 1\}$?

An Estimation Problem

Let X_1, \ldots, X_n be independent Bernoulli random variables with p > 1/2.

What is the probability of observing more than n/2 times the event $\{X_t = 1\}$?

$$\mathbb{P}\Big[\sum_{t=1}^n X_t > \frac{n}{2}\Big] = \sum_{i=n/2+1}^n \binom{n}{i} p^i (1-p)^{n-i}$$

An Estimation Problem

Let X_1, \ldots, X_n be independent Bernoulli random variables with p > 1/2.

What is the probability of observing more than n/2 times the event $\{X_t = 1\}$?

$$\mathbb{P}\left[\sum_{t=1}^{n} X_t > \frac{n}{2}\right] = \sum_{i=n/2+1}^{n} \binom{n}{i} p^i (1-p)^{n-i}$$
$$\mathbb{P}\left[\sum_{t=1}^{n} X_t > \frac{n}{2}\right] \ge 1 - \exp\left(-2n\left(p - \frac{1}{2}\right)^2\right)$$

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 23/84

The Chernoff-Hoeffding Bound

Theorem

Let X_1, \ldots, X_n be i.i.d. samples from a distribution bounded in [a, b], then for any $\varepsilon > 0$

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{t=1}^{n}X_{t}-\mathbb{E}[X_{1}]\right|>\varepsilon\right]\leq 2\exp\left(-\frac{2n\varepsilon^{2}}{(b-a)^{2}}\right)$$

The Chernoff-Hoeffding Bound

Theorem

Let X_1, \ldots, X_n be i.i.d. samples from a distribution bounded in [a, b], then for any $\varepsilon > 0$

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 25/84

The Chernoff–Hoeffding Bound (Cont.d)

Theorem

Let X_1, \ldots, X_n be i.i.d. samples from a distribution bounded in [a, b], then for any $\delta \in (0, 1)$

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{t=1}^{n}X_{t}-\mathbb{E}[X_{1}]\right|>(b-a)\sqrt{\frac{\log 2/\delta}{2n}}\right]\leq\delta$$

The Chernoff–Hoeffding Bound (Cont.d)

Theorem

Let $X_1, X_2, ...$ be i.i.d. samples from a distribution bounded in [a, b], then for any $\delta \in (0, 1)$ and $\varepsilon > 0$

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{t=1}^{n}X_{t}-\mathbb{E}[X_{1}]\right|>\varepsilon\right]\leq \delta$$

if
$$n \geq \frac{(b-a)^2 \log 2/\delta}{2\varepsilon^2}$$

Back to the Binary Classification Problem (1)

Recall that

$$\hat{h}(\cdot; Z_n) = rg\min_{h \in \mathcal{H}} \widehat{R}(h; Z_n) \quad ext{and} \quad h^*(\cdot; \mathcal{P}) = rg\min_{h \in \mathcal{H}} R(h; \mathcal{P})$$

Back to the Binary Classification Problem (1)

Recall that

$$\hat{h}(\cdot; Z_n) = rg\min_{h \in \mathcal{H}} \widehat{R}(h; Z_n) \quad ext{and} \quad h^*(\cdot; \mathcal{P}) = rg\min_{h \in \mathcal{H}} R(h; \mathcal{P})$$

so we should first understand what is the difference between

$$\widehat{R}(h; Z_n) = \frac{1}{n} \sum_{t=1}^n \ell(y_t, h(x_t)) \text{ and } R(h; \mathcal{P}) = \mathbb{E}_{(x,y) \sim \mathcal{P}} \big[\ell(y, h(x)) \big]$$

Back to the Binary Classification Problem (1)

Notice that for any fixed $h \in \mathcal{H}$ and training set Z_n

$$\left|\widehat{R}(h;Z_n)-R(h;\mathcal{P})\right|$$

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 29/84

Back to the Binary Classification Problem (1)

Notice that for any fixed $h \in \mathcal{H}$ and training set Z_n

$$\left|\widehat{R}(h;Z_n)-R(h;\mathcal{P})\right|$$

$$\Big|\frac{1}{n}\sum_{t=1}^{n}\ell(y_t,h(x_t))-\mathbb{E}_{(x,y)\sim\mathcal{P}}\big[\ell(y,h(x))\big]\Big|$$

Back to the Binary Classification Problem (1)

Notice that for any fixed $h \in \mathcal{H}$ and training set Z_n

$$\left|\widehat{R}(h;Z_n)-R(h;\mathcal{P})\right|$$

$$\left| \frac{1}{n} \sum_{t=1}^{n} \ell(y_t, h(x_t)) - \mathbb{E}_{(x,y) \sim \mathcal{P}} \left[\ell(y, h(x)) \right] \right|$$
$$\left| \frac{1}{n} \sum_{t=1}^{n} X_t - \mathbb{E}[X_1] \right|$$

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 29/84

Back to the Binary Classification Problem (1)

Lemma

Let Z_n be a training set of n i.i.d. samples drawn from a distribution \mathcal{P} , then for any fixed $h \in \mathcal{H}$ and $\delta \in (0, 1)$

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{t=1}^{n}\ell(y_{t},h(x_{t}))-\mathbb{E}_{(x,y)\sim\mathcal{P}}\left[\ell(y,h(x))\right]\right|>\sqrt{\frac{\log 2/\delta}{2n}}\right]\leq\delta$$

Back to the Binary Classification Problem (1)

Lemma

Let Z_n be a training set of n i.i.d. samples drawn from a distribution \mathcal{P} , then for any **fixed** $h \in \mathcal{H}$ and $\delta \in (0, 1)$

$$\mathbb{P}\left[\left|\underbrace{\frac{1}{n}\sum_{t=1}^{n}\ell(y_t,h(x_t))}_{empirical\ risk}-\underbrace{\mathbb{E}_{(x,y)\sim\mathcal{P}}\left[\ell(y,h(x))\right]}_{expected\ risk}\right|>\sqrt{\frac{\log 2/\delta}{2n}}\right]\leq\delta$$

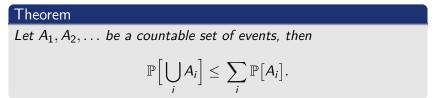
Back to the Binary Classification Problem (1)

Problem: we want to study the performance of the random ERM

$$\hat{h}(\cdot; Z_n) = \arg\min_{h \in \mathcal{H}} \widehat{R}(h; Z_n)$$

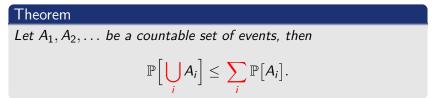
The Union Bound

Also known as: Boole's inequality, Bonferroni inequality, etc.



The Union Bound

Also known as: Boole's inequality, Bonferroni inequality, etc.



A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 33/84

Back to the Binary Classification Problem (2)

Problem: we want to study the performance of the random ERM

$$\widehat{h}(\cdot; Z_n) = \arg\min_{h \in \mathcal{H}} \widehat{R}(h; Z_n)$$

Back to the Binary Classification Problem (2)

Problem: we want to study the performance of the random ERM

$$\widehat{h}(\cdot; Z_n) = \arg\min_{h \in \mathcal{H}} \widehat{R}(h; Z_n)$$

$$\mathbb{P}\left[\exists h \in \mathcal{H} : \left|\frac{1}{n} \sum_{t=1}^{n} \ell(y_t, h(x_t)) - \mathbb{E}_{(x,y) \sim \mathcal{P}}\left[\ell(y, h(x))\right]\right| > \varepsilon\right]$$

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 34/84

Back to the Binary Classification Problem (2)

Problem: we want to study the performance of the random ERM

$$\hat{h}(\cdot; Z_n) = \arg\min_{h \in \mathcal{H}} \widehat{R}(h; Z_n)$$

$$\mathbb{P}\Big[\Big\{\Big|\frac{1}{n}\sum_{t=1}^{n}\ell(y_t,h_1(x_t))-\mathbb{E}_{(x,y)\sim\mathcal{P}}\big[\ell(y,h_1(x))\big]\Big|>\varepsilon\Big\}\bigcup\\\Big\{\Big|\frac{1}{n}\sum_{t=1}^{n}\ell(y_t,h_2(x_t))-\mathbb{E}_{(x,y)\sim\mathcal{P}}\big[\ell(y,h_2(x))\big]\Big|>\varepsilon\Big\}\bigcup$$

$$\left\{ \left| \frac{1}{n} \sum_{t=1}^{n} \ell(y_t, h_N(x_t)) - \mathbb{E}_{(x,y) \sim \mathcal{P}} \left[\ell(y, h_N(x)) \right] \right| > \varepsilon \right\} \bigcup \cdots \right]$$

. . .

Back to the Binary Classification Problem (2)

Lemma

Let Z_n be a training set of n i.i.d. samples drawn from a distribution \mathcal{P} and \mathcal{H} a finite hypothesis set with $|\mathcal{H}| = N$, then for any $\delta \in (0, 1)$

$$\mathbb{P}\left[\exists h \in \mathcal{H} : \left|\frac{1}{n} \sum_{t=1}^{n} \ell(y_t, h(x_t)) - \mathbb{E}_{(x, y) \sim \mathcal{P}}\left[\ell(y, h(x))\right]\right| > \sqrt{\frac{\log 2/\delta}{2n}}\right] \le \mathbb{N}\mathbb{P}\left[\left|\frac{1}{n} \sum_{t=1}^{n} \ell(y_t, h(x_t)) - \mathbb{E}_{(x, y) \sim \mathcal{P}}\left[\ell(y, h(x))\right]\right| > \sqrt{\frac{\log 2/\delta}{2n}}\right] \le \mathbb{N}\delta$$

Back to the Binary Classification Problem (2)

Lemma

Let Z_n be a training set of n i.i.d. samples drawn from a distribution \mathcal{P} and \mathcal{H} a finite hypothesis set with $|\mathcal{H}| = N$, then for any $\delta \in (0, 1)$

$$\mathbb{P}\left[\exists h \in \mathcal{H}: \left|\frac{1}{n} \sum_{t=1}^{n} \ell(y_t, h(x_t)) - \mathbb{E}_{(x, y) \sim \mathcal{P}}\left[\ell(y, h(x))\right]\right| > \sqrt{\frac{\log 2N/\delta}{2n}}\right] \leq \delta$$

Back to the Binary Classification Problem (2)

Problem: In general \mathcal{H} contains an infinite number of hypotheses (e.g., a linear classifier)

A. LAZARIC - Elements of Statistical Learning Theory

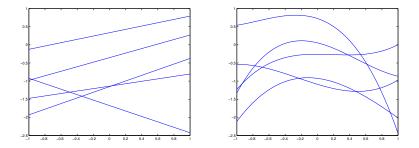
The Symmetrization Trick

$$\mathbb{P}\left[\exists h \in \mathcal{H} : \left|\frac{1}{n}\sum_{t=1}^{n}\ell(y_t, h(x_t)) - \mathbb{E}_{(x,y)\sim\mathcal{P}}[\ell(y, h(x))]\right| > \varepsilon\right]$$
$$\leq 2\mathbb{P}\left[\exists h \in \mathcal{H} : \left|\frac{1}{n}\sum_{t=1}^{n}\ell(y_t, h(x_t)) - \frac{1}{n}\sum_{t=1}^{n}\ell(y'_t, h(x'_t))\right| > \frac{\varepsilon}{2}\right]$$

with the ghost samples $\{(x'_t, y'_t)\}_{t=1}^n$ independently drawn from \mathcal{P} .

The VC dimension

Not all the *infinities* are the same...



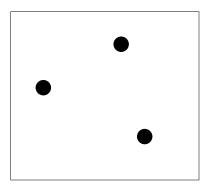
A. LAZARIC - Elements of Statistical Learning Theory

The VC dimension (cont'd)

How many *different predictions* can a space \mathcal{H} produce over *n* distinct inputs?

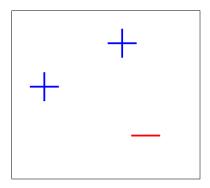
A. LAZARIC - Elements of Statistical Learning Theory

The VC dimension (cont'd)



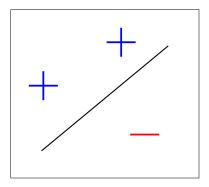
A. LAZARIC - Elements of Statistical Learning Theory

The VC dimension (cont'd)



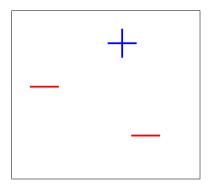
A. LAZARIC - Elements of Statistical Learning Theory

The VC dimension (cont'd)



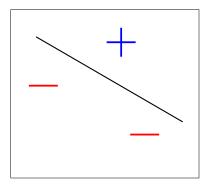
A. LAZARIC - Elements of Statistical Learning Theory

The VC dimension (cont'd)



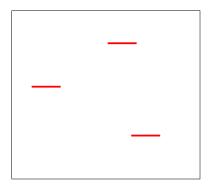
A. LAZARIC - Elements of Statistical Learning Theory

The VC dimension (cont'd)



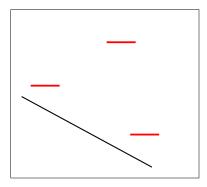
A. LAZARIC - Elements of Statistical Learning Theory

The VC dimension (cont'd)



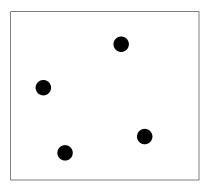
A. LAZARIC - Elements of Statistical Learning Theory

The VC dimension (cont'd)



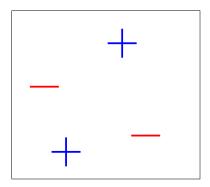
A. LAZARIC - Elements of Statistical Learning Theory

The VC dimension (cont'd)



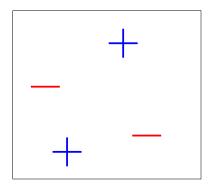
A. LAZARIC - Elements of Statistical Learning Theory

The VC dimension (cont'd)



A. LAZARIC - Elements of Statistical Learning Theory

The VC dimension (cont'd)



The VC dimension of a linear classifier in dim. 2 is $VC(\mathcal{H}) = 3$.

The VC dimension (cont'd)

Let $S = (x_1, \ldots, x_d)$ be an arbitrary sequence of points, then

$$\Pi_{\mathcal{S}}(\mathcal{H}) = \{(h(x_1), \ldots, h(x_d)), h \in \mathcal{H}\}$$

is the set of all the possible ways the d points can be classified by hypothesis in \mathcal{H} .

The VC dimension (cont'd)

Let $S = (x_1, \ldots, x_d)$ be an arbitrary sequence of points, then

$$\Pi_{\mathcal{S}}(\mathcal{H}) = \{(h(x_1), \ldots, h(x_d)), h \in \mathcal{H}\}$$

is the set of all the possible ways the d points can be classified by hypothesis in \mathcal{H} .

Definition

A set S is shattered by a hypothesis space \mathcal{H} if $|\Pi_S(\mathcal{H})| = 2^d$.

The VC dimension (cont'd)

Definition (VC Dimension)

The VC dimension of a hypothesis space $\ensuremath{\mathcal{H}}$ is

$$\mathsf{VC}(\mathcal{H}) = \max\{d|\; \exists |S| = d, |\mathsf{\Pi}_{\mathcal{S}}(\mathcal{H})| = 2^d\}$$

The VC dimension (cont'd)

Definition (VC Dimension)

The VC dimension of a hypothesis space $\ensuremath{\mathcal{H}}$ is

$$\mathsf{VC}(\mathcal{H}) = \max\{d \mid \exists |S| = d, |\Pi_S(\mathcal{H})| = 2^d\}$$

Lemma (Sauer's Lemma)

Let \mathcal{H} be a hypothesis space with VC dimension d, then for any sequence of n points $S = (x_1, \ldots, x_n)$ with n > d

$$|\Pi_{\mathcal{S}}(\mathcal{H})| \leq \sum_{i=0}^{d} \binom{n}{i} \leq n^{d}$$

A. LAZARIC - Elements of Statistical Learning Theory

Back to the Binary Classification Problem (3)

Question: how many values can $\ell(\cdot, \cdot)$ take on 2n samples?

$$2\mathbb{P}\left[\exists h \in \mathcal{H} : \left|\frac{1}{n}\sum_{t=1}^{n}\ell(\mathbf{y}_{t},h(\mathbf{x}_{t})) - \frac{1}{n}\sum_{t=1}^{n}\ell(\mathbf{y}_{t}',h(\mathbf{x}_{t}'))\right| > \frac{\varepsilon}{2}\right]$$

Back to the Binary Classification Problem (3)

Question: how many values can $\ell(\cdot, \cdot)$ take on 2n samples?

$$2\mathbb{P}\left[\exists h \in \mathcal{H} : \left|\frac{1}{n}\sum_{t=1}^{n}\ell(\mathbf{y}_{t},h(\mathbf{x}_{t})) - \frac{1}{n}\sum_{t=1}^{n}\ell(\mathbf{y}_{t}',h(\mathbf{x}_{t}'))\right| > \frac{\varepsilon}{2}\right]$$

If $VC(\mathcal{H}) = d$ and 2n > d, then the answer is **at most** $(2n)^d$!

Back to the Binary Classification Problem (3)

Lemma

Let Z_n be a training set of n i.i.d. samples drawn from a distribution \mathcal{P} and \mathcal{H} a hypothesis space with $VC(\mathcal{H}) = d$, then for any $\delta \in (0, 1)$

$$\mathbb{P}\left[\exists h: \left|\frac{1}{n}\sum_{t=1}^{n}\ell(y_t, h(x_t)) - \mathbb{E}_{(x,y)\sim\mathcal{P}}\left[\ell(y, h(x))\right]\right| > 2\sqrt{\frac{\log 2N/\delta}{2n}}\right] \le 2\delta$$

with $N = (2n)^d$.

Back to the Binary Classification Problem (3)

A simplified reading of the previous lemma.

For any training set Z_n and any hypothesis $h \in \mathcal{H}$ the error of using the empirical risk instead of the expected risk is

$$\left|\widehat{R}(h; Z_n) - R(h; \mathcal{P})\right| \leq O\left(\sqrt{\frac{d \log n/\delta}{n}}\right)$$

with at least $1-\delta$ probability.

The Final Proof

Putting all the pieces together...

$$R(\hat{h}; \mathcal{P}) - R(h^*; \mathcal{P}) =$$

A. LAZARIC - Elements of Statistical Learning Theory

Putting all the pieces together...

$$R(\hat{h}; \mathcal{P}) - R(h^*; \mathcal{P}) =$$

= $R(\hat{h}; \mathcal{P}) - \widehat{R}(\hat{h}; Z_n) + \widehat{R}(\hat{h}; Z_n) - \widehat{R}(h^*; Z_n) + \widehat{R}(h^*; Z_n) - R(h^*; \mathcal{P})$

Putting all the pieces together...

$$R(\hat{h}; \mathcal{P}) - R(h^*; \mathcal{P}) =$$

$$= \underbrace{R(\hat{h}; \mathcal{P}) - \widehat{R}(\hat{h}; Z_n)}_{\text{diff empirical/expected}} + \underbrace{\widehat{R}(\hat{h}; Z_n) - \widehat{R}(h^*; Z_n)}_{\hat{h} \text{ is the ERM}} + \underbrace{\widehat{R}(h^*; Z_n) - R(h^*; \mathcal{P})}_{\text{diff empirical/expected}}$$

A. LAZARIC - Elements of Statistical Learning Theory

Putting all the pieces together...

$$R(\hat{h}; \mathcal{P}) - R(h^*; \mathcal{P}) =$$

$$= \underbrace{R(\hat{h}; \mathcal{P}) - \widehat{R}(\hat{h}; Z_n)}_{\text{diff empirical/expected}} + \underbrace{\widehat{R}(\hat{h}; Z_n) - \widehat{R}(h^*; Z_n)}_{\hat{h} \text{ is the ERM}} + \underbrace{\widehat{R}(h^*; Z_n) - R(h^*; \mathcal{P})}_{\text{diff empirical/expected}}$$

$$\leq O\left(\sqrt{\frac{d \log n/\delta}{n}}\right)$$

Putting all the pieces together...

$$R(\hat{h}; \mathcal{P}) - R(h^*; \mathcal{P}) =$$

$$= \underbrace{R(\hat{h}; \mathcal{P}) - \widehat{R}(\hat{h}; Z_n)}_{\text{diff empirical/expected}} + \underbrace{\widehat{R}(\hat{h}; Z_n) - \widehat{R}(h^*; Z_n)}_{\hat{h} \text{ is the ERM}} + \underbrace{\widehat{R}(h^*; Z_n) - R(h^*; \mathcal{P})}_{\text{diff empirical/expected}}$$

$$\leq O\left(\sqrt{\frac{d \log n/\delta}{n}}\right) + 0$$

Putting all the pieces together...

$$R(\hat{h}; \mathcal{P}) - R(h^*; \mathcal{P}) =$$

$$= \underbrace{R(\hat{h}; \mathcal{P}) - \widehat{R}(\hat{h}; Z_n)}_{\text{diff empirical/expected}} + \underbrace{\widehat{R}(\hat{h}; Z_n) - \widehat{R}(h^*; Z_n)}_{\hat{h} \text{ is the ERM}} + \underbrace{\widehat{R}(h^*; Z_n) - R(h^*; \mathcal{P})}_{\text{diff empirical/expected}}$$

$$\leq O\left(\sqrt{\frac{d \log n/\delta}{n}}\right) + 0 + O\left(\sqrt{\frac{d \log n/\delta}{n}}\right)$$

Putting all the pieces together...

$$R(\hat{h}; \mathcal{P}) - R(h^{*}; \mathcal{P}) =$$

$$= \underbrace{R(\hat{h}; \mathcal{P}) - \widehat{R}(\hat{h}; Z_{n})}_{\text{diff empirical/expected}} + \underbrace{\widehat{R}(\hat{h}; Z_{n}) - \widehat{R}(h^{*}; Z_{n})}_{\hat{h} \text{ is the ERM}} + \underbrace{\widehat{R}(h^{*}; Z_{n}) - R(h^{*}; \mathcal{P})}_{\text{diff empirical/expected}}$$

$$\leq O\left(\sqrt{\frac{d \log n/\delta}{n}}\right) + 0 + O\left(\sqrt{\frac{d \log n/\delta}{n}}\right) \qquad \text{w.p. } 1 - 2\delta$$

The Final Bound

Theorem (VC–Bound)

Let Z_n be a training set of n i.i.d. samples from a distribution \mathcal{P} and \mathcal{H} be a hypothesis space with $VC(\mathcal{H}) = d$. If

$$\hat{h}(\cdot; Z_n) = \arg\min_{h \in \mathcal{H}} \widehat{R}(h; Z_n)$$

and

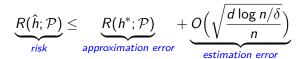
$$h^*(\cdot; \mathcal{P}) = \arg\min_{h \in \mathcal{H}} R(h; \mathcal{P})$$

then

$$R(\hat{h};\mathcal{P}) \leq R(h^*;\mathcal{P}) + O\left(\sqrt{rac{d\log n/\delta}{n}}
ight)$$

with probability at least $1 - \delta$ (w.r.t. the randomness in the training set).

Reading the Bound



A. LAZARIC - Elements of Statistical Learning Theory

Reading the Bound (cont'd)

Question: If we have *n* samples and we use a linear classifier in a *d*-dim space, we want to predict how much error we make with a confidence $1 - \delta$.

A. LAZARIC - Elements of Statistical Learning Theory

Reading the Bound (cont'd)

Question: If we have *n* samples and we use a linear classifier in a *d*-dim space, we want to predict how much error we make with a confidence $1 - \delta$.

Answer:

$$R(\hat{h};\mathcal{P}) \leq R(h^*;\mathcal{P}) + O\Big(\sqrt{rac{(d+1)\log n/\delta}{n}}\Big)$$

Reading the Bound (cont'd)

Question: What happens if we keep increasing the number of samples?

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 52/84

Reading the Bound (cont'd)

Question: What happens if we keep increasing the number of samples?

Answer:

$$\lim_{n\to\infty} R(\hat{h};\mathcal{P}) \leq R(h^*;\mathcal{P})$$

We converge to the same performance as the best hypothesis h^* in our space.

Reading the Bound (cont'd)

Question: We can accept at most an error ε over $(1 - \delta)$ % of times, how many samples should we use?

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 53/84

Reading the Bound (cont'd)

Question: We can accept at most an error ε over $(1 - \delta)$ % of times, how many samples should we use?

Answer:

$$m \geq O\Big(rac{d\log 1/\delta}{arepsilon^2}\Big)$$

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 53/84

Reading the Bound (cont'd)

Question: We are using polynomials, what is the right degree d to use?

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 54/84

Reading the Bound (cont'd)

Question: We are using polynomials, what is the right degree d to use?

partial **Answer**: it depends on how good your space \mathcal{H} is and how many samples you have.

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 54/84

Reading the Bound (cont'd)

Question: We are using polynomials, what is the right degree d to use?

Remark 1: if d > n then $O(\sqrt{d \log(n/\delta)/n}) \approx 1...$ not very useful...

Reading the Bound (cont'd)

Question: We are using polynomials, what is the right degree *d* to use?

Remark 2: let $R(h^*; \mathcal{P})$ be a decreasing function of d (say f(d)), then there exist an optimal d^* such that

$$d^* = \arg\min_d \left(f(d) + O\left(\sqrt{\frac{(d+1)\log n/\delta}{n}}\right) \right)$$

Outline

The Binary Classification Problem

From Chernoff to Vapnik

Application of SLT to L1-regularized Least-squares

Conclusions

The Regression Problem

The environment

- Input space $\mathcal{X} \subseteq \mathbb{R}^{s}$
- Output space $\mathcal{Y} \subseteq \mathbb{R}$

The Regression Problem

The environment

- Input space $\mathcal{X} \subseteq \mathbb{R}^{s}$
- Output space $\mathcal{Y} \subseteq \mathbb{R}$

The learner

• Function space $\mathcal{F} = \{f : \mathcal{X} \to \mathcal{Y}\}$

The Regression Problem

The environment

- Input space $\mathcal{X} \subseteq \mathbb{R}^{s}$
- Output space $\mathcal{Y} \subseteq \mathbb{R}$

The learner

• Function space $\mathcal{F} = \{f : \mathcal{X} \to \mathcal{Y}\}$

The performance

• Loss function $\ell(y, \hat{y})$

The Least-squares Regression Problem

The environment

- Input space $\mathcal{X} \subseteq \mathbb{R}^{s}$
- Output space $\mathcal{Y} \subseteq \mathbb{R}$

The Least-squares Regression Problem

The environment

- Input space $\mathcal{X} \subseteq \mathbb{R}^{s}$
- Output space $\mathcal{Y} \subseteq \mathbb{R}$

The learner

- Basis functions $\varphi_i : \mathcal{X} \to \mathcal{Y}, i = 1, \dots, d$
- ► Linear *d*-dim function space $\mathcal{F} = \{ f_{\alpha}(\cdot) = \sum_{i=1}^{d} \alpha_{i} \varphi_{i}(\cdot); \ \alpha \in \mathbb{R}^{d} \}$

The Least-squares Regression Problem

The environment

- Input space $\mathcal{X} \subseteq \mathbb{R}^{s}$
- Output space $\mathcal{Y} \subseteq \mathbb{R}$

The learner

- ▶ Basis functions $\varphi_i : \mathcal{X} \to \mathcal{Y}$, i = 1, ..., d
- Linear *d*-dim function space $\mathcal{F} = \{ f_{\alpha}(\cdot) = \sum_{i=1}^{d} \alpha_{i} \varphi_{i}(\cdot); \ \alpha \in \mathbb{R}^{d} \}$

The performance

• Loss function
$$\ell(y, \hat{y}) = (y - \hat{y})^2$$

The Least-squares Regression Problem (cont'd)

In the polynomial regression example (e.g., order 2):

- ▶ Basis functions: $\varphi_1(x) = x^2, \varphi_2(x) = x, \varphi_3(x) = 1$
- Function space

$$\mathcal{F} = \{f_{\alpha}(x) = \alpha_1 x^2 + \alpha_2 x + \alpha_3\}$$

The Empirical Risk Minimizer

The training set

Samples of the form input-output $Z_n = \{z_t = (x_t, y_t)\}_{t=1}^n$

The Empirical Risk Minimizer

The training set

Samples of the form input–output $Z_n = \{z_t = (x_t, y_t)\}_{t=1}^n$

The empirical risk minimizer

• Empirical risk of a function $f_{\alpha} \in \mathcal{F}$ for the training set Z_n

$$\widehat{R}(f_{\alpha}; Z_n) = \frac{1}{n} \sum_{t=1}^n (y_t - f_{\alpha}(x_t))^2$$

The Empirical Risk Minimizer

The training set

Samples of the form input–output $Z_n = \{z_t = (x_t, y_t)\}_{t=1}^n$

The empirical risk minimizer

• Empirical risk of a function $f_{\alpha} \in \mathcal{F}$ for the training set Z_n

$$\widehat{R}(f_{\alpha}; Z_n) = \frac{1}{n} \sum_{t=1}^n (y_t - f_{\alpha}(x_t))^2$$

The ERM

$$f_{\hat{\alpha}}(\cdot; Z_n) = \arg\min_{f_{\alpha} \in \mathcal{F}} \widehat{R}(f; Z_n)$$

A Stochastic Generative Model

Assumption (Stochastic generative model)

- There exists a distribution ρ on the input space X
- There exists a target function $f^* : \mathcal{X} \to \mathcal{Y}$
- ► All the pairs (x, y) are *i.i.d.* samples generated as

$$y = f^*(x) + \xi, \quad x \sim \mathcal{P}_{\mathcal{X}}$$

A Stochastic Generative Model

Assumption (Stochastic generative model)

- There exists a distribution ρ on the input space X
- There exists a target function $f^* : \mathcal{X} \to \mathcal{Y}$
- All the pairs (x, y) are *i.i.d.* samples generated as

$$y = f^*(x) + \xi, \quad x \sim \mathcal{P}_{\mathcal{X}}$$

• Expected risk of $f \in \mathcal{F}$ w.r.t. the target function f^* and a distribution ρ

$$R(f_{\alpha}; f^*, \rho) = \mathbb{E}_{x \sim \rho} \big[(f_{\alpha}(x) - f^*(x))^2 \big]$$

A Stochastic Generative Model

Assumption (Stochastic generative model)

- There exists a distribution ρ on the input space X
- There exists a target function $f^* : \mathcal{X} \to \mathcal{Y}$
- ► All the pairs (x, y) are *i.i.d.* samples generated as

$$y = f^*(x) + \xi, \quad x \sim \mathcal{P}_{\mathcal{X}}$$

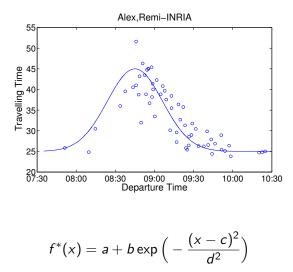
• Expected risk of $f \in \mathcal{F}$ w.r.t. the target function f^* and a distribution ρ

$$R(f_{\alpha}; f^*, \rho) = \mathbb{E}_{x \sim \rho} [(f_{\alpha}(x) - f^*(x))^2]$$

Expected risk minimizer

$$f_{\alpha^*}(\cdot; f^*, \rho) = \arg\min_{f_{\alpha} \in \mathcal{F}} R(f_{\alpha}; f^*, \rho)$$

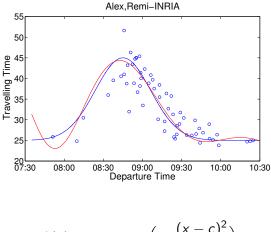
Back to the Motivating Example



A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 61/84

Back to the Motivating Example



$$f^*(x) = a + b \exp\left(-\frac{(x-c)^2}{d^2}\right)$$

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 61/84

A Bit More of Notation

Norms

• L2–weighted norm of f w.r.t. a distribution ρ

$$||f||_{2,\rho}^2 = \mathbb{E}_{x \sim \rho}[f(x)^2]$$

▶ L2-weighted empirical norm of f w.r.t. a sequence (x_1, \ldots, x_n)

$$||f||_{2,n}^2 = \frac{1}{n} \sum_{t=1}^n f(x_t)^2$$

• L2–weighted empirical norm of a vector $v \in \mathbb{R}^n$

$$||v||_{2,n}^2 = \frac{1}{n} \sum_{t=1}^n v_t^2$$

A Bit More of Notation (cont'd)

Vector space (from \mathcal{F} on (x_1, \ldots, x_n))

$$\mathcal{F}_n = \{ (f_\alpha(x_1), \ldots, f_\alpha(x_n)); f_\alpha \in \mathcal{F} \}$$

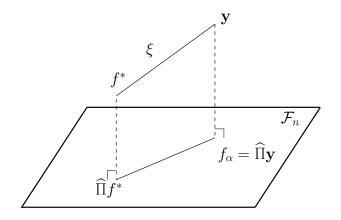
Projection operator

• Projection operator Π of a function f^* onto a function space \mathcal{F}

$$\Pi f^* = \arg\min_{f \in \mathcal{F}} ||f - f^*||_{2,\rho}$$

• Empirical projection operator $\widehat{\Pi}_n$ of a vector \mathbf{y} onto a vector space \mathcal{F}_n $\widehat{\Pi}_n \mathbf{y} = \arg\min_{\mathbf{f} \in \mathcal{F}} ||\mathbf{f} - \mathbf{y}||_{2,n}$

A Geometric View



A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 64/84

Least-squares Solution

Recalling the definition of risk above we have $(\mathbf{y} = (y_1, \dots, y_n))$

 $f_{lpha^*} = \Pi f^*$ $f_{\hat{lpha}} = \hat{\Pi}_n \mathbf{y}$

Least-squares Solution

Recalling the definition of risk above we have $(\mathbf{y} = (y_1, \dots, y_n))$

$$f_{lpha^*} = \Pi f^*$$

 $f_{\hat{lpha}} = \hat{\Pi}_n \mathbf{y}$

Given feature matrix $\Phi \in \mathbb{R}^{n \times d}$

$$\Phi_{t,i} = \varphi_i(X_t)$$

the least-squares solution is

$$\hat{lpha} = (\Phi^{ op} \Phi)^{-1} \mathbf{y}$$

A Prediction Error Bound

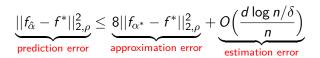
Theorem

Let the training set Z_n be generated according to the generative model above with f^* the target function and a bounded noise $|\xi| \leq C$. If \mathcal{F} is a d-dimensional linear function space, then the least-squares solution satisfies:

$$||f_{\hat{\alpha}} - f^*||_{2,\rho}^2 \le 8||f_{\alpha^*} - f^*||_{2,\rho}^2 + O\left(\frac{d\log n/\delta}{n}\right)$$

with probability $1 - \delta$.

A Prediction Error Bound (cont'd)

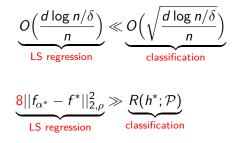


A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 67/84

A Prediction Error Bound (cont'd)

Least-squares regression vs binary classification



A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 68/84

Least-squares Solution in High-Dimensions

Question: How should we design the basis functions so as to have a small approximation error?

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 69/84

Least-squares Solution in High-Dimensions

Question: How should we design the basis functions so as to have a small approximation error?

Answer: If you do not have a specific domain knowledge, just keep adding features! (possibly independent...)

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 69/84

Least-squares Solution in High-Dimensions

Question: How should we design the basis functions so as to have a small approximation error?

Answer: If you do not have a specific domain knowledge, just keep adding features! (possibly independent...)

Problem: the bound scales linearly with d and so the need for samples. So the more the features the more the samples!

Least-squares Solution in High-Dimensions

Question: How should we design the basis functions so as to have a small approximation error?

Answer: If you do not have a specific domain knowledge, just keep adding features! (possibly independent...)

Problem: the bound scales linearly with *d* and so the need for samples. So the more the features the more the samples! Actually if $d \ge n$ then the bounds are completely useless!

L1-Regularized Least-squares Regression

Assumption (High-dimensional and Sparsity assumption)

The target function f^* belong to the high-dimensional function space \mathcal{F} , that is

$$f_{\alpha^*} = \prod f^* = f^* (||f_{\alpha^*} - f||_{2,\rho} = 0)$$

and it can be represented by a small subset of the d features defining $\mathcal{F},$ that is

 $||\alpha^*||_0 \ll d.$

L1-Regularized Least-squares Regression

Given the previous assumption we want to force $f_{\hat{\alpha}}$ to be sparse too. Thus,

$$f_{\hat{\alpha}} = \arg\min_{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} (y_t - f_{\alpha}(x_t))^2 + \lambda ||\alpha||_0$$

L1-Regularized Least-squares Regression

Given the previous assumption we want to force $f_{\hat{\alpha}}$ to be sparse too. Thus,

$$f_{\hat{\alpha}} = \arg\min_{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} (y_t - f_{\alpha}(x_t))^2 + \lambda ||\alpha||_0$$

Problem: this optimization problem is NP-hard...

L1-Regularized Least-squares Regression (cont'd)

The LASSO (least absolute shrinkage and selection operator)

$$f_{\hat{\alpha}} = \arg\min_{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} (y_t - f_{\alpha}(x_t))^2 + \lambda ||\alpha||_1$$

L1-Regularized Least-squares Regression (cont'd)

The LASSO (least absolute shrinkage and selection operator)

$$f_{\hat{\alpha}} = \arg\min_{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} (y_t - f_{\alpha}(x_t))^2 + \lambda ||\alpha||_1$$

The L1-norm is known to be a *sparsity-inducing* norm.

L1-Regularized Least-squares Regression (cont'd)

The LASSO (least absolute shrinkage and selection operator)

$$f_{\hat{\alpha}} = \arg\min_{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} (y_t - f_{\alpha}(x_t))^2 + \lambda ||\alpha||_1$$

The L1-norm is known to be a *sparsity-inducing* norm.

Related to: model selection, feature selection, compressed sensing, high-dimensional statistics, etc.

A Prediction Error Bound (1)

Let us first state a bound for an *oracle* which knows in advance the features corresponding to non–zero α^* coefficients.

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 73/84

A Prediction Error Bound (1)

Let us first state a bound for an *oracle* which knows in advance the features corresponding to non-zero α^* coefficients.

Theorem

An oracle running ordinary least–squares on the set of features $S = \{i | \alpha_i^* \neq 0\}$ with $|S| = s \ll d$ would obtain a performance

$$||f_{\hat{\alpha}}^{ols} - f^*||_{2,n}^2 \le 8||f_{\alpha^*} - f^*||_{2,n}^2 + O\left(\frac{s\log n/\delta}{n}\right)$$

A Prediction Error Bound (1)

Let us first state a bound for an *oracle* which knows in advance the features corresponding to non-zero α^* coefficients.

Theorem

An oracle running ordinary least-squares on the set of features $S = \{i | \alpha_i^* \neq 0\}$ with $|S| = s \ll d$ would obtain a performance

$$|f_{\hat{\alpha}}^{ols} - f^*||_{2,n}^2 \le O\left(\frac{s\log n/\delta}{n}\right)$$

A Prediction Error Bound (1)

Let us first state a bound for an *oracle* which knows in advance the features corresponding to non–zero α^* coefficients.

Theorem

An oracle running ordinary least-squares on the set of features $S = \{i | \alpha_i^* \neq 0\}$ with $|S| = s \ll d$ would obtain a performance

$$||f^{ols}_{\hat{lpha}} - f^*||^2_{2,n} \leq O\Big(rac{s\log n/\delta}{n}\Big)$$

Note: we now consider *fixed* design bounds instead of *random* design bounds.

A Prediction Error Bound (2)

Theorem

Let $f_{\hat{\alpha}}$ be the function returned by LASSO when trained on a training set Z_n and a d-dimensional function space \mathcal{F} , then

$$||f_{\hat{\alpha}} - f^*||_{2,n}^2 \le O\left(||\alpha^*||_1 \sqrt{\frac{\log d/\delta}{n}}\right)$$

if $\lambda = O(\sqrt{\log(d/\delta)/n})$.

A Prediction Error Bound (2)

Theorem

Let $f_{\hat{\alpha}}$ be the function returned by LASSO when trained on a training set Z_n and a d-dimensional function space \mathcal{F} . If a suitable condition on the features* holds, then

$$||f_{\hat{\alpha}} - f^*||_{2,n}^2 \le O\left(\frac{s\log d/\delta}{n}\right)$$

(*) linear independency, restricted isometry property, compatibility condition, ...

Comparison with Least-squares

Recall:

- d number of features
- s level of sparsity of the target function

Method	Estimation error
LS	$O\left(\frac{d\log 1/\delta}{n}\right)$
LASSO	$O\left(\frac{s\log(d/\delta)}{n}\right)$
Oracle LS	$O\left(\frac{s\log 1/\delta}{n}\right)$

Outline

The Binary Classification Problem

From Chernoff to Vapnik

Application of SLT to L1-regularized Least-squares

Conclusions

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 78/84

Other (Technical) Applications of SLT

- Neural networks
- Margin–based classification
- Regularized least-squares regression
- Reinforcement Learning
- Density estimation
- Matrix completion

. . .

Other (Practical) Applications of SLT

- Computer vision (Kinetc!)
- Spam filtering
- Computer security
- Natural language processing (Watson!)
- Bioinformatics
- Collaborative filtering (Netflix!)
- Brain–computer interface

Extensions

- Active Learning
- Unsupervised learning
- Semi-supervised learning
- Fixed design learning
- Transductive learning
- Samples from Markov chains
- Samples from weakly–coupled processes
- Learnability for ergodic processes

►

Things to Remember

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 82/84

 Learning algorithms are stochastic objects but their behavior can be predicted (in probability)

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 82/84

- Learning algorithms are stochastic objects but their behavior can be predicted (in probability)
- Theory helps in designing better algorithms and good algorithms forces us to develop smart theory

nía

- Learning algorithms are stochastic objects but their behavior can be predicted (in probability)
- Theory helps in designing better algorithms and good algorithms forces us to develop smart theory
- Theoretical bounds help in understand the *critical parameters* and their impact on the performance

- Learning algorithms are stochastic objects but their behavior can be predicted (in probability)
- Theory helps in designing better algorithms and good algorithms forces us to develop smart theory
- Theoretical bounds help in understand the *critical parameters* and their impact on the performance
- Theoretical bounds can help in *tuning the parameters*

Things to Remember

"He who loves practice without theory is like the sailor who boards ship without a rudder and compass and never knows where he may cast."

Leonardo da Vinci

nía

A. LAZARIC - Elements of Statistical Learning Theory

April 2-15, 2012 - 83/84

Advanced Topics in Machine Learning Part I: Elements of Statistical Learning Theory

Alessandro Lazaric alessandro.lazaric@inria.fr sequel.lille.inria.fr